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ABSTRACT
This paper presents Tebaldi, a distributed key-value store that explores
new ways to harness the performance opportunity of combining
different specialized concurrency control mechanisms (CCs) within
the same database. Tebaldi partitions conflicts at a fine granularity and
matches them to specialized CCs within a hierarchical framework
that is modular, extensible, and able to support a wide variety of
concurrency control techniques, from single-version to multiversion
and from lock-based to timestamp-based. When running the TPC-C
benchmark, Tebaldi yields more than 20× the throughput of the basic
two-phase locking protocol, and over 3.7× the throughput of Callas,
a recent system that, like Tebaldi, aims to combine different CCs.

1. INTRODUCTION
This paper introduces Tebaldi, a transactional key-value store that

takes significant steps towards harnessing the performance opportu-
nities offered by a federation of optimized concurrency controls by
allowing these mechanisms to be composed hierarchically.

The rationale behind federating CC mechanisms [17, 34, 42, 45,
56] is straightforward: any single CC technique is bound to make
trade-offs or rely on assumptions that cause it to perform extremely
well in some cases but poorly in others. For instance, pessimistic
techniques such as two-phase locking [10] perform well in highly-
contended workloads, but may lead to write transactions unnecessar-
ily stalling read transactions, while multiversioned CC algorithms
improve read performance, but introduce non-serializable behaviors
that are difficult to detect [24, 35]. Since concurrent transactions
interact in fundamentally different ways across these scenarios, these
trade-offs appear unavoidable. A promising approach is instead to
federate different CC mechanisms within the same database, apply-
ing each given CC only to the transactions or workloads where it
shines, while maintaining the overall correctness of the database.

In practice, however, realizing the performance potential of a fed-
erated solution is challenging. Such a solution should be modular: it
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should allow developers to reason about the correctness of any given
CC mechanism in isolation, without being aware of other coexisting
CC mechanisms. The solution should also be general: it should be
capable of federating a large set of diverse techniques—optimistic
and pessimistic, single-version as well as multiversion.

Prior approaches go some way towards achieving these goals as
they enable different concurrency controls to execute on disjoint sub-
sets of either data [42, 51], or transactions [13, 56]. However, some
are restricted to specific CC combinations [13, 17, 34, 45, 51], while
others, though more general, assume that the database/application can
be partitioned such that conflicts across partitions are rare and incon-
sequential to the end-to-end performance of the system [42, 56]. As
a result, most solutions simply handle every cross-partition conflict
using a single, undifferentiated mechanism.

We find that the assumption behind this conclusion is flawed:
cross-partition conflicts can in fact throttle the performance benefits
of federation (§2) as a perfect partitioning of conflicts is, in general,
unfeasible. In practice, there is often an inescapable tension between
minimizing cross-partition conflicts and supporting aggressive CC
mechanisms within each partition.

Tebaldi, the new transactional key-value store that this paper in-
troduces, seeks to resolve this tension with a simple, but powerful,
insight: the mechanism by which different concurrency controls are
federated should itself be a federation. This flexibility, applied hier-
archically at the level of cross-partition CC mechanisms, is key to
realizing the performance potential of federation. Tebaldi’s starting
point is Modular Concurrency Control (MCC) [56], perhaps the most
recent expression of the federated-CC approach. MCC proposes to
partition transactions in groups, giving each group the flexibility to
run its own private concurrency control mechanism. Charged with
regulating concurrency only for the transactions within their own
groups, these mechanisms can be very aggressive and yield more con-
currency while still upholding safety. MCC imposes no restrictions
on the kind of transactions or CCs that it can handle, and emphasizes
modularity: as long as any given isolation property holds within each
group, MCC guarantees that it will also hold among transactions in
different groups. The question at the core of this paper is then simply:
how should this guarantee be enforced?

Callas [56], the distributed database that represents the current
embodiment of the MCC vision, offers a conservative answer: an
inflexible mechanism based on two-phase locking. Tebaldi 1 aims
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to take MCC to a new level—both figuratively and, indeed, literally.
Instead of handling cross-group conflicts through a single mecha-
nism, Tebaldi regulates them by applying MCC recursively, adding
additional levels to its tree-like structure of federated CC mecha-
nisms. Refining the management of cross-group conflicts in this way
increases flexibility in how conflicts are handled, which, in turn, im-
proves performance. Tebaldi can, for example, combine the benefits
of multiversioning [9, 12] with aggressive single version techniques
such as runtime pipelining [56] at the cross-group layer.

Realizing this vision in Tebaldi presents two main technical hur-
dles. First, directly applying CCs hierarchically does not guarantee
serializability (§4). We derive a sufficient condition—consistent or-
dering—that CCs must enforce to ensure correctness, and highlight
how this property can be achieved in practice. Second, federating
different CC mechanisms requires seamlessly managing the differ-
ent expectations upon which their correctness depends (in terms of
protocol, storage, failure recovery, etc.): Tebaldi allows CCs to inde-
pendently implement the execution logic (including maintaining the
necessary metadata) for making ordering decisions, but provides a
general framework for composing the CCs’ execution hierarchically
and determining the appropriate version of data to read or write.

We show that Tebaldi’s hierarchical MCC yields significant per-
formance gains: running the TPC-C benchmark under serializability
shows that Tebaldi yields more than 20× throughput improvement
over the basic two-phase locking protocol, and a 3.7× throughput
increase over Callas [56], the state-of-the-art federated system.

In summary, this paper makes the following contributions:
• It introduces a hierarchical approach to federating concurrency

controls that allows conflicts to be handled more efficiently,
while preserving modularity.
• It identifies a condition for the correct composition of concur-

rency controls within Tebaldi’s hierarchy and shows that sev-
eral existing concurrency controls can be modified to enforce it.
• It presents the design and evaluation of Tebaldi, a transactional

key-value store that implements hierarchical MCC. Tebaldi
currently supports four distinct concurrency controls and ex-
poses an API that allows developers to add new CCs.

In the rest of this paper, we highlight the limitations of existing
federating systems (§2) and introduce our hierarchical approach to
concurrency control (§3), along with its theoretical foundations (§4).
We then introduce the design (§5) and implementation (§7) of Tebaldi,
the first transactional key-value store to federate CCs hierarchically
for performance, highlighting its benefits and limitations. Finally, we
quantify the benefits of our approach (§8), summarize related work
(§9), and conclude (§10).

2. BACKGROUND AND MOTIVATION
Federating concurrency controls is an appealing solution for im-

proving concurrency in distributed databases. In this section, we
summarize its benefits (§2.1) along with the limitations of current
approaches (§2.2).

2.1 The benefits of federation
The drive towards federating concurrency controls stems from

a fundamental tension between a CC algorithm’s generality and its
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Figure 1: TPC-C new order/stock level transactions.

ability to aggressively handle conflicts. Mechanisms like two-phase
locking [10] or optimistic concurrency control [27] make few as-
sumptions about the application or the system, but are often overly
pessimistic in dealing with conflicts. Most optimizations, however,
rely on properties that are unlikely to hold in general, such as full
knowledge of the read and write set [23, 47], lack of SC cycles [44],
the ability to statically determine a total order of tables [56], or
access locality [25, 29]. By federating these mechanisms, one can
restrict the scope of these optimizations only to the portions of the
application for which their assumptions hold, allowing for higher
performance without sacrificing generality. Consider, for example,
runtime pipelining (RP) [56] and deterministic concurrency control
(DCC) [23, 47]. Runtime pipelining efficiently pipelines transac-
tions by allowing operations to observe the result of uncommitted
writes, maintaining correctness through a combination of static anal-
ysis and runtime techniques. RP is most effective when transactions
generate few circular dependencies when accessing tables. As the
number of transactions grows, however, such dependencies are in-
creasingly likely. RP is, for instance, of limited use when applied to
the full TPC-C (Figure 1), as there exists a circular dependency in the
new order and stock level transactions between the stock,
order line, and (the preferred execution order of) district
tables. This cycle prevents RP from pipelining these operations; if
its scope were instead restricted to regulating multiple concurrent
instances of new order, RP could choose a finer grained pipeline,
improving performance [56]. Similarly, deterministic concurrency
control (DCC) [23, 47] shines when the complete access set of transac-
tions is known at begin time, as then DCC can pre-order transactions
according to their data-access, removing the overhead of runtime
conflict detection. Otherwise, DCC’s benefit is limited by its need for
expensive pre-transaction queries to construct the access set.

2.2 The limits of federation
Several prior systems [13, 17, 34, 42, 45, 51, 56] have tried to

tap the performance benefits of federating CC mechanisms, var-
iedly grouping conflicts along boundaries defined by the timing of
conflicts [17, 34], the data they involve [42, 45, 51], or the code
that triggers them [56]. Some are restricted to combining specific
CCs [13, 17, 34, 45, 51]. Others are more general, but assume that
the application/data can be cleanly partitioned such that coordina-
tion across these partitions is simple, with limited impact on per-
formance [42, 56]. Their prescription has been to complement their



partition-specific CC mechanisms with a single, catch-all mechanism
suited to their partition strategy, e.g. two-phase locking [56].

Our findings, however, tell a different story. We find that combin-
ing aggressive in-partition optimizations with a single, conservative
cross-partition mechanism exposes existing federated systems to a
dilemma. On the one hand, in-partition mechanisms, to be effective,
must handle a very specific, and hence narrow, subset of conflicts. On
the other, pushing the remaining conflicts to the cross-partition layer
can cripple its conservative CC, and in turn the performance of the
whole system.

We highlight this dilemma in the Callas [56] system with our
previous TPC-C example. Results are shown in Table 1. The first
column shows the throughput of running stock level and new
order in the same group (with RP in-group). As we discussed, this
arrangement creates circular dependencies that void much of the
potential benefit of RP. Perhaps surprisingly, placing these transac-
tions in separate groups (using 2PL as cross-group CC) yields no
benefit: throughput actually drops by an order of magnitude, as RP’s
preferred ordering of read-write accesses (§2.1) creates deadlocks at
the cross-group level. Removing these deadlocks by reordering new
order’s access to the district and stock table (third column)
improves performance somewhat, but it is still only marginally better
than placing the transactions in the same group. To get a sense for
the role that the cross-group mechanism plays in determining these
results, we show in the last row the throughput of a best-case scenario
for partitioning. We place stock level and new order in sepa-
rate groups, and artificially make them access different warehouses to
eliminate all cross-group read-write conflicts: performance soars by
almost an order of magnitude over that reported in the third column.

These results suggest three observations. First, cross-group con-
flicts matter. The performance bottleneck in our example is the 2PL
cross-group CC mechanism, which cannot efficiently handle the read-
write conflicts on the district table between the two transactions.
Second, the cross-group CC mechanism matters. These read-write
conflicts would have been better handled using a multiversion CC.
Third, no single cross-group CC mechanism can effectively address
all conflicts. This same multiversion CC would fare poorly under
write-write cross-group conflicts.

Tebaldi’s design responds to these observations starting from the
simple premise that the key to performance is, once again, a federa-
tion of CC mechanisms, this time deployed to resolve cross-group
conflicts. To realize this vision, we need to clear several technical
hurdles. First, we need to determine the inner structure of the new
CC federations that Tebaldi enables: our goal is to ensure that these
new degrees of freedom do not come at the expense of modularity.
Second, we need to identify the conditions that ensure the correctness
of Tebaldi’s more general federations. Finally, we need to develop
the system-level support needed to bring this vision to fruition. We
address these issues in the following sections.

3. HIERARCHICAL MCC
Tebaldi seeks to maximize flexibility in CC federations while

preserving modularity. The benefits of flexibility are clear: finer con-
trol in determining the mapping between sets of conflicts and CC
mechanisms enables greater concurrency and higher performance.

Same group Separate - Deadl. Separate - No Deadl. Separate - No Conflict
3207±1 158±9 3598±14 23834±5

Table 1: Impact of grouping on throughput (txn/sec).

Unhinged flexibility can, however, come at the cost of modularity, de-
fined as the ability of individual CCs to order conflicts independently
while guaranteeing isolation. Consider, for instance, a set of three
transactions, T1, T2, and T3, and assume that, to maximize flexibility,
conflicts between each pair of transactions are governed by a separate
concurrency control. Suppose CC1,2 orders T2 after T1, and that
CC2,3 orders T3 after T2. CC1,3 is then left with only one correct
choice (i.e., ordering T3 after T1) and it needs to become aware of
that. In general, a CC mechanism may have to learn the ordering of all
other CCs to guarantee correctness. Tebaldi balances these competing
concerns by applying the theory of MCC [56] recursively, organizing
CC mechanisms as nodes in a multi-level tree. Each node n is respon-
sible for regulating conflicts among a set of transactions T . In turn,
n can choose to delegate some of this responsibility by assigning
disjoint subsets of T to children nodes better suited to handle their
conflicts, while only retaining responsibility for regulating conflicts
across children.

Tebaldi’s hierarchical refinement of MCC yields two key benefits.
On the one hand, it enables greater flexibility: applying MCC recur-
sively largely removes the concern that using aggressive in-group
mechanisms may unnecessarily push conflicts to the conservative
cross-group CC (§2.2). Instead, these conflicts are themselves further
partitioned and mapped to efficient CCs—and so on recursively, until
one reaches the root of the tree. On the other hand, Tebaldi’s multi-
level tree preserves a high-degree of modularity by retaining a key
feature of MCC: the mapping from sets of conflicts to CCs is derived
by subdividing a given set of transactions into mutually disjoint sub-
sets. This makes it impossible for sibling nodes on Tebaldi’s tree to
make conflicting ordering decisions (they regulate disjoint portions
of the serialization graph [3]). Instead, CCs need only communicate
their ordering choices to (and, in turn, have their ordering choices
constrained by) the CC mechanism of their parent node. As we will
see in §4, this structural property is instrumental to guaranteeing that
no two concurrency controls can make conflicting decisions on how
to order a pair of transactions.

4. ENSURING CORRECTNESS
Tebaldi builds upon Adya’s [3] general theory for expressing isola-

tion. Adya associates with every execution a direct serialization graph
whose nodes consist of committed transactions and whose edges mark
the dependencies (read-write, write-write, or write-read) that exist
between them. An execution satisfies a given isolation level if it dis-
allows three properties: aborted reads, intermediate reads, and circu-
larity. The first two conditions prevent a transaction T1, respectively,
from reading the value of an aborted transactionT2 and from reading a
version of an object x written by a transactionT2 thatT2 subsequently
overrides. The third condition is more complex: circularity prevents
a cycle in the serialization graph. The specific edges that compose
the cycle, however, are dependent on the particular isolation level.

In the spirit of modularity, existing MCC implementations [56]
articulate these global requirements separately for in-group and cross-



group mechanisms. In-group mechanisms must prevent circularity,
aborted reads, and intermediate reads that solely involve the subset
of transactions that they are responsible for. Cross-group CCs must
prevent cycles, as well as aborted and intermediate reads, involving
transactions from different groups.

Tebaldi blurs the distinction between cross-group and in-group
mechanisms: every concurrency control in the CC tree acts as an
in-group mechanism in the eyes of its parent, and as a cross-group
mechanism in the eyes of its children. Correctness can then simply
be defined as follows:

Definition 1 A CC tree is correct if every concurrency control in the
tree prevents aborted reads, intermediate reads, and circularity for
the committed transactions in its group.

As it is, this definition says little about how CCs can be composed
in a modular yet flexible fashion. Recall that the key to greater flexi-
bility in Tebaldi is delegation: a parent concurrency control delegates
conflicts that its child is better suited to handle. The parent’s only
responsibility is then to ensure that subsequent ordering decisions
will be consistent with those of its children. Formally:
Consistent Ordering For committed transactions T1 and T2, if a
concurrency control at level i−1 in the tree (CCi−1) creates a di-
rected path from T1 to T2, then its parent CC at level i (CCi) must
never create a path from T2 to T1.

In effect, each subtree in the CC tree defines a partial ordering on
a subset of transactions. Outer concurrency controls merge different
subtrees, extending the partial order and ensuring that the resulting
transaction ordering does not violate circularity.

CC5

CC4 CC3

CC1 CC2
T2T1

T5

T4T3

(a) A 3-layer CC tree.
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(b) Per-CC Ordering decisions.

Figure 2: Per-CC ordering responsibilities in the CC tree.

We illustrate this process in Figure 2.CC1 orders transactions T1

and T2 andCC2 transactions T3 and T4.CC4’s only responsibility
is to ensure that T1/T2 and T3/T4 are ordered consistently—in this
case, by ordering T3 after T2. Similarly,CC5 orders T5 before T1.

Most off-the-shelf concurrency control mechanisms, however, are
not quite as diligent asCC4 andCC5. In general, the parent CC can
constrain the ordering decisions between transactions assigned to
one of its children both directly (e.g., by timestamping transactions at
their start time) and indirectly (by making cross-group ordering deci-
sions that limit, in the service of correctness, a child CC’s discretion
in deciding how to order its own transactions). Ignoring these effects
can lead to violations of consistent ordering.

For example, consider a non-leaf node CCn, running 2PL. As-
sumeCCn has two children CCs:CC1, in charge of ordering transac-
tions T1 and T2, andCC2, in charge of T3. SupposeCC1 serializes
T1 before T2, and that T2 commits first, releasing all its 2PL locks at
CCn. Nothing now preventsCCn from letting T3 read a data object
written by T2, thus forming a cross-group order T2→T3. Similarly,
nothing forbids T3 from writing some data object o and committing
(thus releasing all locks atCCn). Suppose T1 now reads o, causing a

write-read cross-group conflict atCCn between T3 and T1. IfCCn

orders T1 after T3, its two ordering decisions (T2→T3 and T3→T1)
create a path from T2 to T1, violating consistent ordering [56].

Preserving consistent ordering We identify three general strate-
gies by which nodes at adjacent levels of the CC tree can coordinate
their ordering decisions and preserve consistent ordering. When a
parent CC is faced with an ordering decision, it can either straightfor-
wardly adopt the decision of one of its children CCs, take actions that
constrain the future ordering decisions of its children, or procrasti-
nate, leaving more time for its children to propose an ordering. The
choice among these strategies largely depends on the timing of the
decision and on the specifics of the parent’s CC mechanism; indeed,
mechanisms that take multiple steps to reach their final ordering
decision may use a combination of these strategies.

When the parent CC’s ordering decision comes after a child CC
has decided how to order the transactions in its group, the simplest
strategy to ensure consistent ordering is to fully embrace Tebaldi’s
emphasis on delegation and adopt the child’s ordering decisions. This
strategy proves particularly useful when the parent CC orders transac-
tions at commit time, since by then it is likely to know its children’s
ordering decisions. Consider again the above example whereCCn,
the parent CC, runs 2PL. CCn, once it learns of its children’s or-
dering decisions (e.g., T1→T2), must simply respect that ordering
when committing transactions (so that the locks held by T2 are only
released after T1 commits).

When instead the parent CC’s ordering decision comes before the
child has had time to decide, two strategies remain: constraining the
child’s decisions, or procrastinating until the child decides (and then
adopting its decisions).

The constraints imposed by the parent CC can vary from subtle to
overbearing. At the subtle end of the spectrum, how a parent resolves
a cross-group conflict (for instance, by blocking conflicting transac-
tions across groups in 2PL and RP) can often indirectly limit how the
children CCs can serialize these transactions. At the other end of the
spectrum, a parent CC could simply dictate the order of transactions
to its children (for example, Timestamp Ordering [9] assigns each
transaction a unique timestamp at begin time). This degree of micro-
management, of course, would run counter to Tebaldi’s design, which
leverages delegation as the key to greater performance. Nonetheless,
such CCs can serve effectively as inner nodes in Tebaldi’s hierarchy
by selectively procrastinating ordering decisions until their children
make theirs. For example, rather that labeling each transaction in-
stance with a unique timestamp, the parent CC could assign the same
timestamp to a batch of transactions from the same group. By waiv-
ing its chance to order these transactions, the parent would in effect
delegate their ordering to the child CC responsible for that group,
while still constraining the child by preventing it from ordering the
transactions in batch i+1 before those in batch i.

In Section 6, we will discuss in detail how Tebaldi uses adoption,
constraining, and procrastination to integrate several widely used
CCs in its hierarchical architecture.

5. TEBALDI’S DESIGN
Having sketched out the correctness requirements of hierarchical

MCC, we describe next how Tebaldi, our new transactional key-value
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store, enforces these requirements. Similarly to several distributed,
disk-based, commercial systems [2, 4, 15], Tebaldi separates its con-
currency control logic from its storage management and keeps meta-
data associated with CC protocols (like timestamps and version lists
in snapshot isolation, and locks in 2PL) as transient state in the con-
currency control module.

The concurrency control module coordinates how the diverse CC
protocols in Tebaldi’s hierarchy collectively determine the order of
transactions. Tebaldi’s framework for CC coordination leverages
the observation that, despite their diversity, the steps that most CC
protocols take in determining the ordering of a transaction T can be
grouped into four distinct phases: a start phase, an execution phase,
a validation phase, and a commit phase. Tebaldi executes each phase
in two passes (Figure 3). The first pass, top-down, gives parent nodes
the opportunity to constrain how their children’s ordering decisions
affect the ordering of T ; the second pass, bottom-up, lets children
inform their parent ofT ’s current dependency set, i.e., the list of trans-
actions in its group on which T depends. This structure gives Tebaldi
its generality: Tebaldi can support a maximum of CC combinations
by giving every concurrency control, in each phase, the opportunity
to constrain or delegate to its child, while the child can in turn inform
its parent as soon as dependencies become known. This generality
does not come at the cost of modularity: the implementation of each
concurrency control remains independent from that of its parents (or
children) as they communicate only via well-defined communication
channels. Further, Tebaldi is extensible: it provides a blueprint for
adding a new CC to an existing CC hierarchy tree: all that is required
is to identify and integrate the new CC’s four phases in the tree.

The storage module stores and retrieves the appropriate version
of a data object according to the CCs’ ordering decisions. To support
both single version and multiversion concurrency control protocols,
this module is implemented as a multiversion storage that keeps all
the committed and uncommitted writes on each object.

Naturally, there might be exceptions: some specialized concur-
rency controls may not fit well in Tebaldi’s four-phase model or may
expect a specific storage layout. Likewise, there may be inner CCs
whose ordering decisions are not known at commit time. We discuss
the limitations of our approach in §5.2.

5.1 Protocol
Executing a transaction T in Tebaldi requires coordinating the

actions of all the CCs handling T . These CCs form a path π in the CC
tree (starting at the root and ending in CCn) as each CC delegates
some of T ’s conflicts to a child. Tebaldi executes T as follows:

Start phase In the top-down pass, each CC on π allocates the
specific metadata that it requires. A CC may, for example, initialize
data-structures that either uniquely identify the transaction or order

T1

CC ordering decisions

Tentative CC2 read of x

rw

Corrected CC1 read of x

wr
 CCwr

CC1
T2 T3CC2

CC1

Figure 4: Read logic in execution phase.

it relative to concurrently running transactions (e.g., start timestamps
in serializable snapshot isolation and timestamp ordering, or trans-
action id in lock-based protocols). More complex protocols, like
Calvin [47], may also use the start phase to batch transactions, pre-
ordering transactions within a batch. At the end of the phase, the
bottom-up pass, starting fromCCn, lets children inform their parent
of T ’s new dependency set.

Execution phase In this phase, each CC along π runs its execu-
tion phase for each read and write operation in T . In doing so, CCs
refine T ’s position in the overall transaction schedule: choosing to
read from a version created by a transaction Ti orders T after Ti,
while inserting a new object version before Tj orders T before Tj .

In the top-down pass, each CC executes its own CC-specific logic
and appropriately constrains the ordering decisions of its children by
blocking (or aborting) operations. Lock-based systems, for instance,
delay operations until conflicting locks have been released, before
placing a lock on the chosen object and executing their children’s
execution phase. The process is similar for multiversioned systems:
though these techniques do not require blocking, they may decide to
abort T on write-write conflicts.

The bottom-up pass has two components. First, as in the start
phase, a child can forward T ’s dependency set to its parent. Second,
the CCs onπ collaboratively identify the appropriate version to return
on a read operation. Specifically, a child CC proposes on a read op-
eration a “candidate” version to return. Its ancestors can then amend
the child CC’s proposal based on transactions that may have written
to that same object in sibling groups.

To illustrate, consider the CC tree in Figure 4. T1 is in one group,
while T2 and T3 are in another (controlled byCC2); the interaction
between the two groups is regulated by the cross-group concurrency
control CC1. Suppose transactions T1 and T2 both write object x
(producing, respectively x1 and x2) and thatCC1 chooses to order
T1 after T2 but before T3 (solid edges). Now consider a read of x
by T3: as T1 and T3 are in different groups,CC2 is unaware that T1

wrote x1. It thus proposesT2’s write x2 as a candidate read value (red
dashed edges). Returning this value would create a cycle in the final
transaction schedule that consists of an anti-dependency edge from
T3 toT1 (asT3 missesT1’s write) and an ordering edge fromT1 toT3.
CC1 thus “corrects”CC2 and instead returns x1, removing the cycle
(blue dotted edges). Importantly,CC2 never becomes aware of the
existence of x1. RestrictingCC2 to this partial view is necessary to
preserve Tebaldi’s modularity, which hinges on concurrency controls
making ordering decisions solely for transactions in their group.

Validation phase This phase makes the ultimate decision [10]
on whether T can commit and on its position in the final transaction
schedule. In the top-down pass, each CC along π determines whether
T is committable and, if desired, constrains its children’s ordering
decisions by delaying their validation phase. In the bottom-up pass,



starting from the last CC on π, each CC forwards to its parent either
T ’s dependency set or its decision to abort T . The parent CC can in
turn use that information to determine whether it can commit T in an
order consistent with its child’s decision.

The process of deciding whether T can commit varies widely
across CCs. Validation is trivial in lock-based systems, as having
acquired all locks is sufficient to ensure commit. Optimistic systems
must instead verify whether the objects read by T are still current,
or otherwise abort T . Likewise, the ease with which the full set of
dependent transactions can be reported also varies. In most single-
version systems, T always knows its dependency set by the end of the
validation phase. In contrast, that information is not available in mul-
tiversion systems like SSI until all transactions that were concurrent
with T have committed.

Commit phase Tebaldi guarantees that T is committed atom-
ically across all CCs by ensuring that the chained commit phases
execute uninterrupted, starting from the leaf CC on π.

5.2 Limitations
Tebaldi’s framework strives to be general, modular, and extensi-

ble. These benefits, however, come at the cost of some efficiency, as,
unlike systems designed to work solely with a fixed subset of CCs,
Tebaldi cannot co-design components. Single-versioned concurrency
controls, for instance, do not need to keep version histories, whereas
Tebaldi’s storage module must store them to support multiversioned
CCs. Similarly, while many specialized systems can benefit from
co-locating concurrency controls’ metadata (such as locks and times-
tamps) with the actual data, Tebaldi’s generality requires their separa-
tion. Finally, some CCs, such as 2PL, do not need a validation phase.

Moreover, Tebaldi’s ability to incorporate a given CC is based on
the assumption that the CC can be expressed using its protocol’s four
phases and modified to guarantee consistent ordering (§ 4). These
assumptions, though valid for common concurrency controls, may
not hold universally; and, even when they do, may reduce efficiency.
For example, batching increases the probability of write-write con-
flicts in snapshot isolation (§6, §8.4) and may reduce the scheduling
flexibility of time-travelling concurrency controls like TicToc [57].

6. USE CASES
This section sketches the different concurrency control protocols

currently supported by Tebaldi. This initial selection achieves a dual
purpose. First, it illustrates how one can guarantee consistent ordering
for real, well-known concurrency controls and how these CCs can
be implemented in Tebaldi. Second, it speaks to the generality of our
approach: Tebaldi supports two lock-based, single-versioned proto-
cols (traditional two-phase locking [7, 22] and the recently proposed
runtime pipelining [56]), and two multiversioned protocols (serial-
izable snapshot isolation [12, 24, 36], and multiversioned timestamp
ordering [39]). We describe each mechanism in turn.

Two-Phase Locking (2PL) Our implementation directly follows
that of the seminal algorithm [7, 22]: transactions acquire shared
read locks when executing a read operation and exclusive write locks
when executing write operations. Every transaction holds these locks
until commit, so as to guarantee serializability. Any deadlocks are
handled by timing out transactions.

Implementing 2PL as a non-leaf CC requires only two small
changes [56] to the algorithm. First, 2PL delegates in-group concur-
rency control to its children CCs by marking all locks acquired by
transactions from the same group as non-conflicting. Second, 2PL
ensures consistent ordering by delaying a transaction’s commit until
all its in-group dependencies have also committed.

2PL takes no action in the start phase. All necessary locks are
acquired in the top-down pass of the execution phase. The bottom-up
pass of the execution phase decides the appropriate read version to
return: 2PL accepts the child’s proposal if it is an uncommitted value
from its group or else returns the latest committed value. The valida-
tion phase then gathers the committing transaction’s dependency set
from the child CC and delays commit until all transactions in that set
have committed. Finally, it releases the locks in the commit phase.

Runtime Pipelining (RP) Runtime pipelining [56] handles data
conflicts more efficiently than 2PL through a combination of static
analysis and runtime constraints. RP first statically constructs a di-
rected graph of tables, with edges representing transactional data
/ control-flow dependencies, and topologically sorts each strongly
connected set of tables. Transactions are correspondingly reordered
and split into steps, with step i accessing tables in set i. A runtime
pipeline ensures isolation: once T2 becomes dependent on T1, T2 can
execute step i only once either T1 has terminated, or T1 is executing
a step larger than i. Operations within a step are isolated using 2PL.

RP’s start phase initializes the step counter and dependency set.
In the execution phase, RP delegates concurrency control within each
group to the child CC by allowing transactions from the same group
to execute the same step concurrently. Upon starting a new step i,
RP first “commits” the previous step by releasing the step-level lock
(after in-group dependencies have also step-committed). It then waits
both for all cross-group dependencies to finish executing step i, and
for all in-group dependencies to start executing step i, before acquir-
ing the step-level lock. The bottom-up pass of the execution phase
computes in-group dependencies and decides the appropriate read
version to return: RP accepts the child’s proposal if it is a write from
its group that has not step-committed. Otherwise, it returns the latest
step-committed value. The validation phase delays a transaction’s
commit until transactions in its dependency set have committed.

Serializable Snapshot Isolation (SSI) Tebaldi supports a dis-
tributed implementation of serializable snapshot isolation [12, 24, 36],
a multiversioned protocol that rarely blocks readers. As in snapshot
isolation, transaction order is decided using start/commit timestamps:
transactions read from a snapshot at the start timestamp, while writes
become visible at the commit timestamp. SSI ensures serializability
by detecting (and preventing) “pivot” transactions that have both
incoming and outgoing anti-dependency edges.

Enforcing consistent ordering in SSI requires care. Firstly, unlike
2PL and RP, SSI partially decides transaction ordering through start
timestamp assignment. Consider for example two transactionsT1 and
T2 from the same group, with T1 having a smaller start timestamp.
Consistent ordering can be violated if the child CC orders T2 before
T1, as T2 may observe a write from another group that T1 cannot
see. To address this, Tebaldi uses batching. Instances of transactions
from the same group are placed in a batch and assigned the same start
timestamp, delaying their relative ordering until commit. A child CC



is then free to order batched transactions without violating consistent
ordering. Though transactions in a batch share a start timestamp, they
can commit individually with different commit timestamps (once all
their in-group dependencies have already committed). Introducing
grouping and batching means that SSI must detect and prevent pivot
batches, with both incoming and outgoing anti-dependencies.

The start phase assigns the batch’s start timestamp to the trans-
action (determined by a centralized timestamp server). During the
execution phase, SSI tracks pivot batches by asynchronously query-
ing a group manager that keeps track of batches’ anti-dependencies.
Cross-group write-conflicting transactions are aborted. In the bottom-
up pass of the execution phase, SSI decides on the appropriate read
version: SSI accepts the child’s proposal if it is a value from its own
batch, and otherwise returns the latest committed version whose
commit timestamp is smaller than the transaction’s start timestamp.
Finally, the validation phase waits for the asynchronous pivot-check
replies, and for dependent transactions to commit, before acquiring
the final commit timestamp and reporting the transaction’s depen-
dency set to the parent CC. Doing so may require additional waiting:
the full set of anti-dependencies is not known until all transactions
with a smaller start timestamp finish executing.

The aforementioned protocol can be further optimized under cer-
tain assumptions. For instance, if SSI is used as the CC at the root of
the CC tree to separate read-only transactions from update transac-
tions (as is often the case), the protocol can be optimized as follows.
First, SSI does not need to wait for concurrent transactions to finish
executing, as root CC does not need to report a transaction’s depen-
dency set. Second, in the presence of a single update child group
(which can be further partitioned), batching is no longer necessary.
Indeed, as transactions in the update group will never observe values
from the read-only group, it is not necessary to assign them start
timestamps. Consistent ordering can be achieved simply by commit-
ting transactions in the update group according to their in-group order.
Finally, checking for pivot batches is not necessary, as a pivot batch
must involve at least two update groups.

Multiversioned Timestamp Ordering (TSO) Multiversioned
timestamp ordering [9, 39] minimizes snapshot isolation’s high abort
rates under heavy write-write conflicts. TSO decides the serialization
order by assigning a timestamp to every transaction at their start time.
A writer creates a new object version marked with its timestamp,
unless a reader with a larger timestamp has read the prior version
(i.e., has missed this write), in which case the writer is aborted. A
read returns the latest version with a timestamp smaller than the
reader’s. To prevent aborted reads, a transaction logs the write-read
dependencies, and only commits after all these dependencies have
committed. Tebaldi, inspired by Faleiro et al. [23] implements an
optimization: promises. Transactions can optionally specify at start
time object keys that they will write during their execution. Tebaldi
then delays any transactions that attempt to read those values until
the corresponding write occurs (instead of eventually having to abort
the write transaction).

To enforce consistent ordering in TSO, Tebaldi once again uses
batching. The start phase creates a batch of transactions for each child
group and assigns the same timestamp to all transactions in the same
batch. As in SSI, batching delays TSO’s ordering decisions for a

batch until commit time, giving children CCs complete freedom in
how they order transactions.

In the execution phase, the write logic remains identical. For reads,
TSO accepts the child’s proposal if it is a write from its own batch.
Otherwise, it returns the latest version of that object with a smaller
timestamp. In the validation phase, TSO uses the in-group depen-
dency reports to decide on the order of transactions within a batch,
and commits a transaction only after all its in-group dependencies
have committed. As TSO exposes uncommitted values across groups
(unlike SSI), the protocol must additionally verify that later batches
read the latest write from previous batches: consistent ordering can
be violated if the final order of writes differs from their execution
order. Suppose, for instance, that two transactions T1 and T2 in the
same batchB write the same object. If T1 executes the write before
T2, a reader from another group, ordered afterB, will read T2 instead
of T1, even if the child CC eventually orders T1 after T2. To prevent
this, TSO delays committing a transaction T until all batches with
lower timestamps have committed. It aborts T if there exists a later
object version that has the same timestamp as the version observed by
T . Finally, TSO can conservatively report a transaction’s dependency
set to its parent to include all transactions with a smaller timestamp.

7. IMPLEMENTATION
The current prototype of Tebaldi provides support for tables, vari-

able sized columns, and read-modify-write operations. It does not
however currently support range operations, durability or replication.
Our implementation consists of 21K lines of C++ code.

Cluster architecture A Tebaldi cluster consists of two major
types of nodes. The transaction coordinators (TC) manage transac-
tions’ states, while data servers (DS) hold partitions of the data and
handle data access requests from TCs.

The implementation of the four phases discussed in §5.1 is split
between TC and DS nodes and follows a common pattern: for each
phase, the TC issues request(s) to the appropriate DS and waits for
the reply. In certain phases, some CCs may omit contacting the DS,
while others may require additional communication. For example, in
runtime pipelining the TC for transaction T contacts the TCs for the
transactions in T ’s dependency set to determine when it is safe for T
to begin executing a new step. The DS, meanwhile, maintains a lock
table and manages timeouts.

Phase optimizations We previously introduced each of the four
protocol phases as two-pass procedures: a top-down pass where the
parent CC constrains the execution of its children, followed by a
bottom-up pass where the child CC informs the parent of its ordering
decisions. In our experience however, few CCs leverage the bottom-
up pass in the start phase or the top-down pass in the validation phase.
Our current implementation removes them for efficiency.

Latency reduction Sequentially executing the respective phases
of every CC in a CC tree of heighth could result in up toO(h)network
round trips, as each CC’s logic may involve communication between
the TC and DS. To side-step this issue, Tebaldi, for each phase, first
executes the TC component of every CC, batching communication to
the DS. The DS in turn executes the DS part of every CC, and batches
replies to the TC. This reduces the framework’s latency to a single
round-trip per phase, in line with prior non-hierarchical approaches.



Garbage collection Tebaldi implements a garbage collection ser-
vice that prunes stale versions from multiversioned storage. Logically,
a write can be GCed when all CCs agree that it will never be read
again. For efficiency, Tebaldi processes records in batch within a GC
epoch: Tebaldi assigns a GC epoch id to every transaction, period-
ically incrementing the epoch. When all transactions in an epoch
finish, Tebaldi asks all CCs to confirm that they will never order on-
going or future transactions before a transaction in this epoch. Once
all CCs have confirmed, all stale writes in the epoch can be GCed.

8. EVALUATION
Tebaldi seeks to unlock the full potential of federating concurrency

controls by applying MCC hierarchically. To quantify its benefits and
limitations, we ask the following questions:
• How does Tebaldi perform compared to monolithic concur-

rency controls and two-layered MCC systems? (§8.1 and §8.2)
• Is Tebaldi’s framework conducive to adapting CC trees to

changes in the workload? (§8.3)
• How do Tebaldi’s different features contribute to increasing

concurrency? (§8.4)
• What is the overhead of running multiple CCs? (§8.5)
Experimental setup We configure Tebaldi to run on a Cloud-

Lab [1] cluster of Dell PowerEdge C8220 machines (20 cores, 256GB
memory) connected via 10Gb Ethernet. The ping time between ma-
chines ranges from 0.08ms to 0.16ms. The cluster contains 20 ma-
chines for the TPC-C and SEATS experiments, and ten machines for
microbenchmarks; each machine runs ten data server nodes and ten
transaction coordinators (with one additional machine for timestamp
assignment and batch management under SSI).
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Figure 5: CC trees used in TPC-C. Leaf nodes are labeled with
transactions: payment (PAY), new order (NO), delivery
(DEL), order status (OS), and stock level (SL).

Benchmarks We evaluate the performance of our system using
several microbenchmarks, TPC-C [16], and SEATS [19]. TPC-C
models the business logic of a wholesale supplier and is the de-facto
standard for OLTP workloads, while SEATS simulates an airplane
ticket selling service.

We adapt the TPC-C benchmark to our transactional key-value
store interface: we remove the scan over a customer’s last name in
the payment and order status transactions. We additionally
use a separate table as a secondary index on the order table to locate a

customer’s latest order in the order status transaction. Our cur-
rent implementation does not contain the 1% of abortednew order

transactions. In line with prior work that focuses on contention-heavy
workloads [33, 55, 56, 59], we run TPC-C test clients in a closed-loop
and populate ten warehouses.

We also adapt the SEATS benchmark: we keep its application
logic but reduce the number of available flights to demonstrate the
benefits of hierarchical grouping under high-contention, and sig-
nificantly increase the number of seats in each “flight” to run the
benchmark for sufficiently long. The configuration we ultimately
adopt, though unrealistic for airlines, may model seating assignments
for a small number of sporting events, each with a large number
of seats. Specifically, we remove the scan over the customer name
(in delete reservation and update customer) and use
separate tables as secondary indices on the reservation table to
locate the reservation id based on the flight id and seat / customer id.
Further, we reduce the number of available flights to 50, increase the
number of seats available per flight to 30,000, and reduce the number
of seats accessed in find open seats to 30.

Optimal grouping for both benchmarks is obtained by recursively
identifying highly contended transactions and pairing them with con-
currency controls well-suited to the transactions’ inherent structure.
We give specific details for each benchmark in §8.1 and §8.2.

8.1 Tebaldi’s performance on TPC-C
Baselines We compare Tebaldi against two monolithic concur-

rency controls (2PL and SSI) and the federated system Callas [56].
These systems are implemented within the Tebaldi framework, and
hence make use of the same network and storage stack. In SSI, we al-
low aborted transactions to backoff for 5milliseconds before retrying
to reduce the resource consumption.

Grouping To configure the Callas system, we start with the group-
ing strategy proposed in the Callas paper. This initial grouping (Callas-
1, Figure 5a) partitions transactions into three groups. The first group
contains new order and payment, whose conflicts can be ag-
gressively optimized by runtime pipelining. The second group uses
another instance of runtime pipelining for thedelivery transaction.
Finally, the two read-only transactions are in the third group. This
grouping, when running under serializability (Callas originally runs
under read-committed), introduces a large number of cross-group
read-write conflicts between the stock level and new order

transactions. Because of the fixed structure of Callas, these conflicts
must be handled by 2PL. To mitigate this problem, we modify Callas-
1 by moving the stock level transaction in the first group, where
it can be pipelined with new order (Callas-2, Figure 5b).

Thanks to the flexibility of hierarchical MCC, Tebaldi supports
a wider variety of grouping strategies than its cousin Callas. We pro-
pose two such groupings, in Figure 5c and Figure 5d respectively. The
first grouping strategy (Tebaldi 2-layer) leverages Tebaldi’s ability to
support cross-group protocols other than 2PL by selecting a multiver-
sion cross-group protocol, SSI. It then partitions transactions into two
groups: a read-only group containing transactions order status

and stock level that requires no in-group concurrency control;
and an update transaction group that uses runtime pipelining to op-
timize the new order, payment, and delivery transactions.
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Figure 6: Performance of TPC-C benchmark.

The second grouping strategy (Tebaldi 3-layer) instead leverages
Tebaldi’s hierarchical model by creating a concurrency control tree
of depth three. This approach partitions transactions into the same
leaf-level groups as the original Callas grouping (Callas-1). How-
ever, it then uses two distinct cross-group mechanisms to handle
the remaining conflicts: 2PL for conflicts between new order /

payment group and the delivery group, and SSI for conflicts
between the read-only group and all other groups.

Results Figure 6 compares the performance of Tebaldi’s grouping
strategies against those of Callas, and against two monolithic con-
currency control protocols: two-phase locking (2PL) and serializable
snapshot isolation (SSI).

Consider first the performance of the two monolithic concur-
rency controls: the peak throughput of SSI is 7× higher than that
of 2PL, because of the high read-write conflict ratio between new
order and payment (the transactions in fact read and write differ-
ent columns, but Tebaldi, like most other systems, takes row-level
locks). As contention increases (by increasing the number of clients),
the performance of SSI drops steeply as the high write-write conflict
rate causes SSI to repeatedly abort transactions.

When contention is high, the performance of SSI and 2PL is
lower than that of Callas and Tebaldi. Callas’s initial grouping strat-
egy (Callas-1) is bottlenecked by the heavy read-write conflicts be-
tween stock level and new order. Revising this partitioning
(Callas-2) yields a 77% throughput increase, but decreases the effi-
ciency of RP (by moving stock order and new order to the
same group): new order’s writes to order, new order and
order line tables, which could never conflict in the previous
grouping (as order ids are unique), can now read-write conflict with
stock order’s reads (creating additional synchronization in RP).
Additionally, combining stock level and new order creates
circular table dependencies, resulting in a coarser-grained pipeline.
There is once again a tension between the potential inefficiency of a
monolithic cross-group mechanism, and the in-group mechanism’s
desire to handle few transactions.

To side-step this tension, Tebaldi has two options: select a more
suitable cross-group mechanism (Tebaldi 2-layer), or create a deeper
grouping hierarchy (Tebaldi 3-layer). The former yields a 2.6×
improvement over the best grouping strategy in Callas: SSI, as a
cross-group mechanism, can efficiently handle the read-write conflict
between stock level and new order, while the three update
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Figure 7: Performance of SEATS benchmark.

transactions can be pipelined fairly efficiently. This pipelining re-
mains suboptimal however, as the potential conflict between new
order and delivery voids new order’s unique access to ta-
bles, creating additional synchronization innew order’s execution.
The latter grouping strategy (Tebaldi 3-layer) addresses this issue:
the small and carefully selected scope of each group gives every in-
group concurrency control the opportunity to perform well. The rare
conflicts between the new order and delivery transactions are
regulated by 2PL, while the common read-write conflicts are resolved
using SSI. This careful tailoring of cross-group CCs to cross-group
conflicts allows the three leaf groups to remain small. This narrow
scope results in optimal pipelines for the two groups running RP,
while the read-only group can operate without any concurrency con-
trol, leading to a further 44% improvement.

8.2 Tebaldi’s performance on SEATS
Grouping We compare three grouping strategies. The baseline

is a monolithic 2PL system. To optimize the read-write conflicts,
our second grouping uses SSI to separate the read-only transactions
(find flights andfind open seats) from the update trans-
actions, and uses 2PL to regulate the remaining update transactions.
The third grouping further optimizes the conflicts among the update
transactions. Unlike TPC-C however, these highly contended read-
write transactions (create, update and delete of reservation)
cannot be efficiently pipelined using RP because of the circular depen-
dency between tables (flight, customer and reservation).
Nonetheless, TSO can still pipeline these transactions by preordering
them at runtime using timestamps. In doing so, however, it creates
many spurious dependencies between non-conflicting transactions.
To alleviate this concern, we observe that transactions that access dif-
ferent flights rarely conflict. We leverage Tebaldi’s flexible grouping
to create not one, but multiple TSO instances, one for each flight, and
assign transactions to their group at start time according to their in-
put, using 2PL as cross-group mechanism. This approach efficiently
pipelines the (likely) conflicts for transactions that access the same
flight but does not unnecessarily order those that don’t (in the rare
cases when conflicts between transactions accessing different flights
arise, they are still handled by 2PL).

Results Figure 7 compares the performance of Tebaldi’s three-
layer hierarchy against those of two-phase locking (2PL) and the
two-layer hierarchy (SSI+2PL). We find that, unsurprisingly, the



1 // input: w_id, d_id
2 begin transaction
3 o_id = district[w_id, d_id].next_order_id;
4 ol_num = order[w_id, d_id, o_id].ol_num;
5 for (i = 0; i < ol_num; ++i) {
6 item_id = order_line

[w_id, d_id, o_id, i].ol_i_id;
7 item_stats[item_id]++;
8 }
9 commit

Figure 8: Pseudocode of hot item.
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peak throughput of the two-layer setting is 1.9× higher than that
of 2PL as it minimizes the effect of the read-write conflicts intro-
duced by the long-running read-only transactions find flights

and find open seats. As contention increases, however, new
reservation transactions spend a prohibitive time waiting to
acquire exclusive locks, hampering performance. Pipelining transac-
tions that access the same flights using TSO yields a further 2×
speedup: TSO can pipeline operations and expose uncommitted
writes to subsequent transactions without delays. Tebaldi’s flexibility
enables a “hybrid” type of grouping: first by transaction type, and
then by data (input type), once one knows whether two transaction
instances will actually conflict. Thus, Tebaldi gets the best of both
worlds: the efficiency of 2PL when transactions rarely conflict, and the
localized performance gains of TSO’s pipeline when transactions do.

8.3 Extensibility
For moderate changes in the workload, Tebaldi’s modular and

flexible design makes it possible to handle the new conflict patterns
by adding new concurrency controls to the existing CC trees. To
showcase this benefit, we add a new transaction hot item to TPC-
C and sketch how the prior Tebaldi 3-layer hierarchy can be refined
to account for the additional conflicts.

This new transaction (shown in Figure 8) computes popular or
“hot” items by randomly sampling recent orders in the database, and
aggregating the per-item sale count over all warehouses. We set the
new TPC-C workload distribution to be the following: 41.8% of trans-
actions are new order transactions, 41.8% are payment, while
the remaining transactions all run 4.1% of the time.

The hot item and new order transactions read-write con-
flict heavily: neither of the current cross-group 2PL or SSI are thus
good choices for regulating their behavior (the batching in SSI will
periodically promote write-write conflicts between new order in-
stances to cross-group conflicts, causing aborts). Instead, we have
two solutions: we can keep the same three-layer hierarchy, placing the
new transaction in the same group as new order and payment
at the cost of a less efficient pipeline. Alternatively, we can leverage
Tebaldi’s flexibility to place the transaction in a separate group and
use RP as the cross-group mechanism to regulate conflicts with the
new order/payment group.

The experiment shows that the three-layer approach has a through-
put of 16417± 192 txn/sec, while the four-layer approach gives
23232±111 txn/sec. Placing new order and hot item in the
same group reduces the pipeline’s efficiency as new order’s ac-
cesses to tables are no longer guaranteed to be non-conflicting. In the

four-layer solution, we side-step this issue by placinghot item and
new order in their own group, yielding a 42% throughput increase.

8.4 Impact of flexibility
We next investigate in more detail how Tebaldi’s higher flexibility

enhances concurrency. Tebaldi increases flexibility over prior feder-
ated systems in two ways: by supporting multiple cross-group CCs,
and by enabling finer partitioning of conflicts.

Support for different cross-group protocols We first quantify
the potential gains associated with Tebaldi’s support for different
cross-group concurrency controls. To do so, we compare the perfor-
mance of different cross-group CCs for different conflict patterns. We
use a two-layer hierarchy with two groups; we fix the in-group CCs
and set the cross-group CC to be either 2PL, SSI, or RP. In the first
three workloads, each group contains an update transaction consist-
ing of seven write operations. The first operation writes to a shared
table consisting of n rows, so the conflict rate for both in-group and
cross-group is 1/n. The second operation writes to a group-local
table of ten rows, adding only in-group conflicts. The remaining oper-
ations within the group conflict with low probability (1/10000). Both
groups use RP to handle in-group conflicts. By tuning n, we vary
the cross-group conflict ratio in each workload (for benchmarks ww-
1, ww-5, and ww-10, respectively 1%, 5%, and 10% of write-write
conflicts). In the three remaining workloads, we replace one of the
write-only groups with a read-only group. As read-only transactions
never conflict with each other, we use an empty in-group concurrency
control protocol. As above, we vary the cross-group conflict rate,
this time of read-write conflicts, in each benchmark (for benchmarks
rw-1,rw-5, and rw-10, respectively 1%, 5%, and 10%).

Figure 9 summarizes the throughput for each workload. We report
the results in transactions per second as the average of three runs. We
find that no single cross-group protocol outperforms the others in all
cases, underscoring the practical importance of selecting the cross-
group mechanism most suitable for a given workload. Specifically, we
find that, SSI, unsurprisingly, performs best when handling read-write
conflicts across groups, as readers and writers never block each other.
In contrast, SSI performs worse in the presence of write-write con-
flicts because of repeated aborts. Its poor performance is exacerbated
by the need for batching, as write-write conflicts cannot be resolved
until the next batch change (in ww-1 transactions already retry on
average more than 2.5 times). Aborts in this benchmark are relatively
cheap (they mostly happen on the first operation). Costlier aborts
would likely cause SSI’s performance to drop. Runtime pipelining, in
contrast, performs best in scenarios with medium to high amounts of
write-write contention (ww-10,ww-5). When write-write conflicts are



rare, however, the overhead of maintaining the pipeline outweighs its
benefit: the more conservative but simple 2PL performs best (ww-1).

Hierarchical application of MCC The previous microbench-
mark was restricted to two-layer grouping strategies with a single
cross-group mechanism per configuration. We next quantify the ben-
efits of using deeper hierarchies in which we can combine multiple
cross-group protocols. To do so, we focus on a scenario in which no
single cross-group mechanism can efficiently handle the pairwise
interactions of all transaction groups. This represents a best-case
scenario for Tebaldi; we quantify potential overheads associated with
deeper hierarchies in §8.5.

The microbenchmark consists of one read-only transaction, T1

and two update transactions, T2, and T3. T1 read-write conflicts heav-
ily with T2 and T3, while T2 and T3 cannot be efficiently handled
within a group. TableA suffers from heavy contention as it contains
only ten rows, while all other tables (B toE) contain 10,000 rows
and rarely contend. Transaction T1 reads a single row inA, and ten
rows from the remaining tables. Transaction T2 first writes a row in
A, and subsequently writes a random key from every tableB toE.
TransactionT3 does not access tableA. Instead, it reads a random key
from tablesB toE, and subsequently writes back toB. Considering
the previous in-group mechanism, runtime pipelining: RP can handle
T2 efficiently, but not T2 and T3 (or T1).

Constructing a three-layer CC tree in Tebaldi side-steps this issue.
The read-write conflict between T1 and T2/T3 can be handled effi-
ciently through selecting SSI as root CC, placing T1 and T2/T3 in
separate groups. Next, as T2 and T3 rarely conflict with each other,
they can be placed in separate groups with 2PL as cross-group CC.
Finally, conflicts between different instances of T2 can be efficiently
pipelined with RP. As contention is low for T3, we simply use 2PL
as its in-group mechanism.

We compare our solution to the four most promising two-layer
hierarchies. The first two hierarchies use SSI as cross-group mecha-
nism to optimize the read-write conflict between T1 and T2, but differ
in how they handle T2 and T3: the first grouping strategy (Two-layer
1) puts T2 and T3 in separate groups. It allows T2 to be efficiently
pipelined, but requires SSI to run with batching enabled, which can
periodically promote in-group conflicts to cross-group conflicts. The
second baseline (Two-layer 2) places T2 and T3 in the same group.
This gives SSI better performance at the cost of a less efficient in-
group pipeline. The third grouping strategy (Two-layer 3) has T1 and
T2 in one group running RP, and T3 in another group running 2PL.
2PL is used across these two groups. This avoids the issues associated
with having SSI across groups, yet still optimizes the conflict be-
tween T1 and T2 at the cost of a less efficient pipeline for T2. The last
baseline (Two-layer 4) runs all three transactions in separate groups
(2PL cross-group). It prioritizes T2 by using the optimal pipeline.
None of these four solutions is perfect: while T1, T2 and T3 would all
benefit from being in a single group, no single concurrency control
is well-suited to handle conflicts between T1/T2 and T2/T3.

Figure 10 confirms our intuition. The peak throughput achieved
by the three-layer hierarchy is 63% higher than the best performing
two-layered grouping strategy. The fourth (Two-layer 4) grouping
strategy performs worst as two-phase locking cannot efficiently han-
dle the frequent read-write conflicts between T1 and T2. The first

Setting Latency (ms) Throughput (K txn/sec)
stand-alone RP 2.969± 0.004 490.0± 1.7

2PL - RP 3.068± 0.004 386.1± 0.4
SSI - RP 3.259± 0.006 368.4± 1.7
RP - RP 4.047± 0.004 291.9± 0.8

Table 2: Latency and resource cost of adding additional layers.

baseline (Two-layer 1) performs best under moderate number of
concurrent clients but suffers from a high abort rate due to SSI’s
sensitivity to the write-write conflicts: its performance drops as the
number of clients increases. Finally, the performance of both the
second and third grouping options (Two-layer 2 and 3) is hampered
by a sub-optimal runtime pipeline.

8.5 Overhead
Tebaldi attempts to improve the performance of applications that

are bottlenecked on data conflicts. It does so by enhancing the con-
currency of these applications, at the cost of more complex control
logic: each transaction needs to percolate through every concurrency
control in its path on the CC tree. This additional complexity can
negatively impact the application in two ways: it can increase the
latency of transactions, and can increase the application’s resource
consumption. We quantify these potential drawbacks in this section.
To do so, we run a microbenchmark with grouping strategies that do
not yield any additional concurrency, and measure the resulting cost
increase. The benchmark consists of a single transaction type with
seven write operations, and ensures concurrent transactions never
conflict with each other. We use a stand-alone runtime pipelining
protocol as the baseline, and add either 2PL, RP, or SSI cross-group
layers to the hierarchy.

Latency overhead To measure the impact of the hierarchy’s depth
on latency, we run the benchmark with a small number of clients (20)
to ensure that the resource (CPU / network) consumption is low.
Our results are shown in the second column of Table 2 and denote
the transaction’s average latency over ten 60 seconds runs. We find
that the relative latency increase of adding an additional layer in the
hierarchy depends heavily on the cross-group concurrency control
being added. Adding a 2PL cross-group layer yields a small 3.3%
increase in latency. This increase is exclusively due to computational
overhead: the number of round-trips in Tebaldi is independent of the
hierarchy depth (§7). Any necessary additional round trips is thus a
property of the concurrency control itself: 2PL requires no additional
round trips, while SSI requires an additional round trip to contact
the timestamp server, and RP requires an additional round-trip per
operation. These additional network trips are reflected in our result:
adding an SSI cross-group layer increases latency by 9.8%, while
adding an RP cross-group layer increases latency by 36.3%.

Computation resources overhead Under high system load, the
computational overhead of adding CCs could become prohibitive,
bottlenecking the system on CPU or network resources. To quan-
tify this overhead, we increase the workload to measure the peak
throughput of the microbenchmark, ensuring that the CPU is the
bottleneck each time. Our results are summarized in the third column
of Table 2. Adding a 2PL layer over an RP in-group mechanism leads
to a 21% decrease in throughput while adding an SSI layer leads to
25% drop. The overhead is relatively small, as 2PL and SSI remain



fairly light-weighted when compared to RP. The overhead of adding
an RP layer is more significant: throughput drops by 40%, as RP is
fairly complex. Note that, even when adding an RP layer over the RP
in-group mechanism, the throughput does not simply halve, as many
components of the framework are independent of the hierarchy depth.

9. RELATED WORK
Tebaldi generalizes the concept of modular concurrency control

introduced in Callas [56]. Callas is part of a large body of work
that seeks to improve database performance by composing multiple
concurrency controls. We summarize it here.

Partitioning by transactions or conflicts Many systems seek to
improve performance by tailoring concurrency controls to specific
transactions or conflicts. Mixed concurrency control [8], for instance,
uses different CC mechanisms to handle write-write and write-read
conflicts. Likewise, multiversion two-phase locking [9, 13, 14, 21, 50]
partitions transactions into read-only and update transactions, regulat-
ing update transactions using 2PL but allowing read-only transactions
to read, without blocking, from a consistent snapshot by using a mul-
tiversioned protocol. Similarly, H-Store [46] optimizes transactions
that can execute on a single shard by removing unnecessary net-
work communication, just as Granola [17] optimizes independent
distributed transactions, i.e., transactions where each site can reach
the same decision even without communication, by eliminating the
two-phase commit protocol.

Though these techniques increase concurrency, they cannot flex-
ibly combine CCs as they simply partition transactions in two types,
with all conflicts of the same type handled by the same CC. In contrast,
Tebaldi does not specify the partitioning a-priori and can combine
diverse CC mechanisms.

Partitioning by data Other systems instead partition the database
into multiple disjoint components, allowing each component to ex-
ecute its own concurrency control while preserving consistency glob-
ally. Federated databases [11, 37, 38, 41] for instance, support serial-
izable global transactions that touch multiple local databases running
different CCs. Some systems [32] even compose federated DBs into
a hierarchical structure. Unlike Tebaldi, federated DBs are motivated
primarily by functionality requirements (i.e., the ability to execute
transactions across different databases) rather than performance: in-
deed, they can perform worse than local DBs. Nonetheless, many
of their techniques are relevant: Tebaldi’s guidelines for modifying
CCs to guarantee consistent ordering draw heavily from the federated
databases’ notion of serialization points [11, 37].

Alternatively, some systems partition data such that correctness
is directly guaranteed if transactions are per-partition serializable,
removing the need for cross-partition CCs. For instance, the work
on local atomicity properties [51] explores the required properties
of per-object CCs needed to guarantee database-level serializability.
Likewise, Sha et al.[42] partitions the database into atomic datasets,
each with its own CC, such that no consistency invariant spans mul-
tiple datasets. Database-level consistency then directly follows from
per-dataset serializability. These approaches suffer from two main
limitations: first, they place stringent constraints on how they allow
data to be partitioned and CCs to be combined. Second, they require
all conflicts on the same data partition to be handled by the same CC.

Partitioning by time Certain systems choose to partition the
database into distinct phases during which different CCs can exe-
cute. Granola [17] executes one-shot and “independent” transactions
(i.e., transactions whose commit/abort decision is deterministic) in
timestamp mode, using an efficient lock-less timestamp-based pro-
tocol. Transactions that require coordination are instead constrained
to execute in a less efficient locking mode that relies on traditional
2PL. Likewise, Doppel [34] distinguishes between joined/split and
reconciliation phases. Transactions in the joined phase use traditional
optimistic concurrency control. Transactions in the split/reconcil-
iation phase, assuming their operations commute, are guaranteed
never to conflict: instead, they modify split per-core state that is
subsequently merged in the reconciliation phase.

Hierarchical decomposition Multi-level serializability [6, 40,
52, 53, 54] observes that transactions can be hierarchically decom-
posed such that each layer in a tree captures operations at a different
level of abstraction: seemingly atomic operations at layer i+1may in
fact be implemented as composite elements at layer i, with different
concurrency controls used at different layers. A sufficient condition
to ensure serializability in this context is level-by-level serializabil-
ity [5]: assuming conflicting operations at level i+1 generate at least
one conflicting operation at level i, serializability is guaranteed if the
serialization graph between levels i and i+1 is acyclic. Intuitively,
this means that if a level orders conflicting operations, the corre-
sponding operations at higher level should be ordered consistently.
In the context of multi-level serializability, individual CCs regulate
the interactions of all transactions at a given level. In contrast, CCs
in Tebaldi are responsible only for a subset of transactions.

Specialized concurrency controls Some concurrency controls
achieve better performance by targeting specific workloads, or as-
suming specific properties on transactions [23, 46, 47, 59]. These
could be incorporated into Tebaldi within a group.

Pot-pourri Alternative approaches to improving database per-
formance include relaxing consistency at the cost of additional pro-
gramming complexity [18, 28, 30, 31, 43], relying on new hardware
[20, 23, 26, 48, 49, 57], and co-designing the replication protocol
with the concurrency control mechanism [58]. These techniques are
orthogonal to hierarchical MCC and, if combined, would likely be
mutually beneficial.

10. CONCLUSION
By allowing more flexibility in how concurrency control mech-

anisms can be assigned to manage conflicts, Tebaldi explores new
ways to harness the performance opportunity of combining different
specialized concurrency controls within the same database. Its under-
lying ethos is the hierarchical application of MCC: Tebaldi partitions
conflicts at a fine granularity and matches them to a wide variety of
CCs, within a framework that is modular and extensible.
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